1.

12a.

The Pentagon, Rm 3E118
Washington, DC 20301-3080

Approved for Public Release; - distribution unlimited

LT

- - - Form Approved
nrnan— ATION PAGE |az Q
‘-"; AD—A279 758 9o 1 hour per renponee, including the time for reviewing instructions, ssarching exsting data oes "
ont m ' MWW|mecwﬂhumdhwmdmmm
.| wege \lllMIﬂl' Jirecsorate for information Opsrations and Reports, 1215 JeHerson Davis Highway. Sulte 1204, Arington, VA
8202~ e Managemert and Butiget. Washington, DC 20603.
Ias F 3. REPORT TYPE AND DATES
Emiy | S PRGNS
94032551.11344, AVF: 94ddc500_1C
DDC-I, DACS Sun SPARC/Solaris to 80186 Bare Ada Cross Compile
System with Rate Monotonic Scheduling, Versicn 4.6.4 T
National Institute of Standards and Technology
Ga1thersburg, Maryland
7. PERFORMING ORGANIZATION NAME(S) AND . PERFORMIN
ORGANIZATION
Esﬂg?gg %gg?ﬁgg% stgtandards and Technology
Gaithersburg, Maryland 20899
USA .
9.5 iN ITORING AGENCY NAME(S) AN . /\
m o Promam oftes W 94-15729

NTARY

RI {ON/AVAILABILITY

12b. DISTRIBUTION

13.

[74. SUBJECT
Ada programming ldnguage, Ada Compler Validation Summary Report, A

(Maximum 200

Host: Sun SPARCclassic (under So2aris, Release 2.1)
Target: Intel iSBC 186/100 (bare machine)

5. NOMBEROF |

cility

ﬁﬁ??;ﬂl?[33: ;Egggpbéé;ag Val. Testing, Ada Val. Office, Ada Val.
X 18.
CUUSFmK“ON ! v < CLASSIFICATION

UNCLASSIFIED

UNCLASSIFEED UNCLASSIFIED UNCLASSIFIED

94 5 25 O I 8 PHE Qs “~n-umn.1

“Sandard

20, LIMITATION OF

Prescribed by ANS! 8K,

AVF Control Number: NIST94DDCS500_1C 1.11
DATE COMPLETED

BEFORE ON~-SITE: 94-03-18
AFTER ON-SITE: 94-03-28
REVISIONS: 94-04-11

Ada COMPIIER
VALIDATION SUMMARY REPORT:
Certificate Number: 940325S1.11344
DDC-I
DACS Sun SPARC/Solaris to 80186 Bare Ada

Cross Compiler System with Rate Monotonic Scheduling,
Version 4.6.4

Sun SPARCclassic => Intel iSBC 186/100 (Bare Machine)

Prepared By:
Software Standards Validation Group
Computer Systems Laboratory
National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg, Maryland 20899

U.S.A. Accesion For

NTIS CRA& g
DTIC TAB
Unannounced 0
Justification _

By

Distribution |

Availability Codes

Dist Special

il |

AVF Control Number: NIST94DDCS500_1C_1.11
Certificate Information
The following Ada implementation was tested and determined to pass AcCvVC
1.11. Testing was completed on March 25, 1994.
Compiler Name and Version: DACS Sun SPARC/Solaris to 80186 Bare Ada
Cross Compiler System with Rate Monotonic
Scheduling, Version 4.6.4

Host Computer System: Sun SPARCclassic running under Solaris,
Release 2.1

Target Computer System: Intel iSBC 186/100 (Bare Machine)

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
94032581.11344 is awarded to DDC-I. This certificate expires 2 years
after ANSI/MIL-STD-1815B is approved by ANSI.

This report has been reviewed and is approved.

-

/ Sy)L
o
Cfé;rfiﬂ Sl i

Ada Validation Facility

Dr. David K. Jeffefso Mr. L. Arnold Johnson
Chief, Information Systems Manager, Software Standards
Engineering Division (ISED) Validation Group

Computer Systems Laboratory (CSL)
National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg, Maryland 20899
U.S.A.

——&da Joint Program Office

Organization

Director, puter & Softwaré~ David R. Basel

Engineering Division Deputy Director,
Institute for Defense Analyses Ada Joint Program Office
Alexandria VA 22311 Defense Information Systems Agency,

Center for Information Management
Washington DC 20301
U.S.A.

The following declaration
Customer:
Certificate Awardee:

Ada Validation Facility:

ACVC Version:

Ada Implementation:

Compiler Name and Version:

Host Computer System:
Target Computer System:

Declaration:

NIST94DDCS5J0_1C 1.11
DECLARATION OF CONFORMANCE
of conformance was supplied by the customer.
DDC~-I
DDC-1
National Institute of Standards and
Technology
Computer Systems Laboratory (CSL)
Software Standards Validation Group
Building 225, Room A266
Gaithersburg, Maryland 20899
U.S.A.

1.11

DACS Sun SPARC/Solaris to 80186 Bare Ada Cross
Compiler System with Rate Monotonic Scheduling,
Version 4.6.4

Sun SPARCclassic running under Solariz, Release 2.1

Intel iSBC 186/100 (Bare Machine)

I the undersigned, declare that I have no knowledge of deliberate deviations from the
Ada Language Standard ANSI/MIL-STD-1815A ISO 8652-1987 in the implementation listed

above.

-7/ . e /7 ! . e

St L F /l. e i ‘
Customer Signature Date
Company DDC-I
Title

%, . NiAX KA~ 96 - 32/

Cerfificaté Awardee Signature Date

Company DDC~-I
Title

a) Total Number of Applicable Tests 3562

b) Total Number of Withdrawn Tests 104
c) Processed Inapplicable Tests 504
d) Non-Processed I/0 Tests 0
e) Non-Processed Floating-Point

Precision Tests o]

f) Total Number of Inapplicable Tests 504 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section
1.3) was taken on-site by the validation team for processing. The
contents of the magnetic tape were loaded directly onto the host
computer.

After the test files were loaded onto the host computer, the full
set of tests was processed by the Ada implementation. The DDC-I
Ada downloader runs on the Sun SPARCclassic and is used for
downloading the executable images to the target Intel iSBC 186/100
(Bare Machine). The DDC-I Debug Monitor runs on the target Intel
iSBC 186/100 (Bare Machine) and provides communication interface
between the host downloader and the executing target Intel iSBC
186/100 (Bare Machine). The two processes communicate via
ethernet.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target
computer system by the communications link described above, and
run. The results were captured on the host computer system.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B for
a complete 1listing of the processing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this test
were:

-list
Test output, compiler and linker 1listings, and job logs were

captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

TABLE OF CONTENTS

CHAPTER l..ciccceocecoscecncssocscccsoossosassscscncssssncnsecal=l
INTRODUCTION. ¢ ccceevecccvsnsocsccescascccsscasccsoccsssssssssl=l
1.1 USE OF THIS VALIDATION SUMMARY REPORT..cccc¢cecs.l=-1

1.2 REFERENCES..:cccotccecccsccsssscscccscsssccccscsacal=2

1.3 ACVC TEST CLASSES:ccccccccecescccssscscsscssacscesl=2

1.4 DEFINITION OF TERMS....ctccccceccccccssssnssocsecl=3

CHAPTER 2............................oo................o...z-l
IMPLEMENTATION DEPENDENCIES...cccccccecccsscccccsscccses=l
2.1 WITHDRAWN TESTS...........-............-........2-1

202 INAPPLICABI‘E TESTSQ...‘..0'..0.......'.".......2-1

2.3 TEST MODIFICATIONS...c.ccvceossceccocscssscssscecel=3

CHAH.ER 3....0...0.0.0.000000.0..00.0.0-.........0.....00-03-1
PROCESSING INFORMATION. .ccccceccoscccssconcccsscssssasssseld=l
3.1 TESTING ENVIRONMENT...ccveccacccccacscscsccssscsscsseld=l

3.2 SUMMARY OF TEST RESULTS...ccc0ccccacccasscssscceld=l

3.3 TEST EXECUTION. .coccccoceoscccecssccacsosassassasceel=2

APPENDIX A...o.o.'o..l.o‘.o...oloo.'QDQ...QOOQDDOQOOQQs....A-l
MACRO PARAMETERS...'...Q.........‘Q.....‘..........‘.".A-l

APPENDIX B.....I......Q.l......l...n’...Q....Q...I........OB-l
COMPILATION SYSTEM OH‘IONSO ® ® 0 0 000000000 0E N 00O S OG RS S SISO B-l
LINKER OPTIONS. ® S 8 & 0 0 %000 T OO0 0 S S O e OO LAt OO eSSGseesCoecn B-2

APPENDIX CO'.00.-‘0.0..00.00'.00....0.......o.....o.o.o.o.oc-l
APPENDIX F OF THE Ada STANDARDQ-ocooDo..-.-o...l.ooo..coc-l

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures [Pro92] against the Ada Standard [Adas3)
using the current Ada Compiler Validation Capability (ACVC). This
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to [Pro92]. A detailed description
of the ACVC may be found in the current ACVC User's Guide ([UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. 1In the United States, this is provided in accordance
with the "Freedom of Information Act" (5 U.S.C. #552). The results
of this validation apply only to the computers, operating systenms,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road

Springfield, virginia 22161

U.S.A.

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation Organization

Computer and Software Engineering Division
Institute for Defense Analyses

1801 North Beauregard Street

Alexandria, Virginia 22311-1772

U.S.A.

1.2 REFERENCES

[(Ada83] Ref \
ANSI/MIL-STD-IBlSA, February 1983 and IS0 8652 1987.

(Pro92] Ada Compiler Validation Procedures, Version 3.1, Ada Joint
Program Office, August 1992.

[(UG89] Ada Compiler Validatjon Capability User's Guide, 21 June
1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC.
The ACVC contains a collection of test programs structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
name identifies the class to which it belongs. Class A, C, D, and
E tests are executable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are executed. Three Ada library units. the
packages REPORT and SPPRT13, and the procedure CHECK FILE are used
for this purpose. The package REPORT also provides a set of
identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK_FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. If these units are not
operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is
compiled and the resulting compilation 1listing is examined to
verify that all violations of the Ada Standard are detected. Some
of the class B tests contain legal Ada code which must not be
flagged illegal by the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macrc strings have to be
replaced by implementation-specific values--for example, the

1-2

!

largest integer. A list of the values used for this implementation
is provided in Appendix A. 1In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.

For each Ada implementation, a customized test suite is produced by
the AVF. This customization consists of making the modifications
described in the preceding paragraph, removing withdrawn tests (see
section 2.1) and, possibly some inapplicable tests (see Section 3.2
and [UG89]).

In order to pass an ACVC an Ada implementation must process each

test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler

Ada Compiler
Validation
Capability (ACVC)

Ada Implementation

Ada Joint Program
office (AJPO)

Ada Validation
Facility (AVF)

Ada Validation
Organization (AVO)

Compliance of an
Ada Implementation

The software and any needed hardware that
have to be added to a given host and target
computer system to allow transformation of
Ada programs into executable form and
execution thereof.

The means for testing compliance of Ada

implementations, Validation consisting of
the test suite, the support programs, the
ACVC Capability VUser's Guide and the

template for the validation summary (ACVC)
report.

An Ada compiler with its host computer
system and its target computer systemn.

The part of the certification body which
provides policy and guidance for the Ada
certification Office system.

The part of the certification body which

carries out the procedures required to
establish the compliance of an ada
implementation.

The part of the certification body that
provides technical guidance for operations
of the Ada certification system.

The ability of the implementation to pass an
ACVC version. :

Computer System

Conformity

Customer

Declaration of
Conformance

Host Computer
System

Inapplicable Test

Iso

Operating System

Target Computer
System

A functional unit, consisting of one or more
computers and associated software, that uses
common storage for all or part of a program
and also for all or part of the data
necessary for the execution of the program;
executes user- written or user-designated
programs; performs user-designated data
manipulation, including arithmetic
operations and logic operations; and that
can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

Fulfillment by a product, process, or
service of all requirements specified.

An individual or corporate entity who enters
into an agreement with an AVF which
specifies the terms and conditions for AVF
services (of any kind) to be performed.

A formal statement from a customer assuring
that conformity is realized or attainable on
the Ada implementation for which validation
status is realized.

A computer system where Ada source programs
are transformed into executable form.

A test that contains one or more test
objectives found to be irrelevant for the
given Ada implementation.

International Organization for
Standardization.

The Ada standard, or Language Reference
Manual, published as ANSI/MIL-STD-i815A

-1983 and ISO 8652-1987. Citations from the
LRM take the form "“<section>.<subsection>:
<paragraph>."

Software that controls the execution of
programs and that provides services such as
resource allocation, scheduling,
input/output control, and data management.
Usually, operating systems are predominantly
software, but partial or complete hardware
implementations are possible.

A computer system where the executable form
of Ada programs are executed.

1-4

Validated Ada
Compiler

Validated Ada
Implementation

Validation

Withdrawn Test

The compiler of a validated Ada
implementation.

An Ada implementation that has been
validated successfully either by AVF testing
or by registration [Pro92].

The process of checking the conformity of an
Ada compiler to the Ada programming language
and of issuing a certificate for this
implementation.

A test found to be incorrect and not used in
conformity testing. A test may be incorrect
because it has an invalid test objective,
fails to meet its test objective, or
contains erroneous or illegal use of the Ada
programming language.

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 104 tests had been
withdrawn by the Ada Validation Organization (AVO) at the time of
validation testing. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for
this list of withdrawn tests is 93-11-22.

B27005A E28005C B28006C C32203A C34006D C35507K
C35507L C35507N C355070 C35507P C355081 C35508J
C35508M C35508N C25702A C35702B C37310A B41308B
C43004A C45114A C45346A C45612A C45612B c45612C
C45651A C46022A B49008A B49008B AS54B02A C55B06A
A74006A C74308A B83022B B83022H B83025B B83025D
B83026B C83026A C83041A B85001L C86001F C94021A
C97116A C98003B BA2011A CB7001A CB7001B CB7004A
CCl223A BC1226A CCl226B BC3009B BD1B02B BD1B0O6A
AD1BOS8A BD2A02A CD2A21E CD2A23E CD2A32A CD2A41A
CD2A41E CD2A87A CD2B15C BD3006A BD4008A CD4022A
CD4022D CD4024B CD4024C CD4024D CD4031A CD4051D
CD5111A CD7004C ED7005D CD7005E AD7006A CD7006E
AD7201A AD7201E CD7204B AD7206A BD8002A BD8004C
CD9005A CD9GO5B CDA201E CE2107I CE2117A CE2117B
CE2119B CE2205B CE2405A CE3111C CE3116A CE3118A
CE3411B CE3412B CE3607B CE3607C CE3607D CE3812A
CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explained in documents issued by IS0
and the AJPO known as Ada Commentaries and commonly referenced in
the format AI-ddddd. For this implementation, the following tests
were determined to be inapplicable for the reasons indicated;
references to Ada Commentaries are included as appropriate.

The following 2901 tests have floating-point type declarations
requiring more digits than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests)
C35706L..Y (14 tests)

C35705L..Y (14 tests)
C35707L..Y (14 tests)

2-1

C35708L..Y (14 tests) C35802L..2 (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..2 (15 tests) C45621L..2 (15 tests)
C45641L..Y (14 tests) C46012L..2 (15 tests)

C24113I..K (3 tests) use a line length in the input file which
exceeds 126 characters.

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a
predefined integer type with a name other than INTEGER,
LONG_INTEGER, or SHORT_INTEGER: for this implementation, there is
no such type.

C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORT FLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with
a name other than FLOAT, LONG_FLOAT, or SHORT_FLOAT: for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations
for types that require a SYSTEM.MAX MANTISSA of 47 or greater; for
this implementation, MAX_MANTISSA is less than 47.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE_OVERFLOWS is FALSE for floating point types and the results
of various floating-point operations lie outside the range of the
base type; for this implementation, MACHINE_OVERFLOWS is TRUE.

C4A013B contains a static universal real expression that exceeds
the range of this implementation's largest floating-point type;
this expression is rejected by the compiler.

D56001B uses 65 levels of block nesting; this level of block
nesting exceeds the capacity of the compiler.

B86001Y uses the name of a predefined fixed-point type other than
type DURATION; for this implementation, there is no such type.

C96005B uses values of type DURATION's base type that are outside
the range of type DURATION; for this implementation, the ranges are
the same.

CA2009C and CA2009F check whether a generic unit can be
instantiated before its body (and any of its subunits) is compiled;
this implementation creates a dependence on generic units as
allowed by AI-00408 and AI-00506 such that the compilation of tte
generic unit bodies makes the instantiating units obsolete. (See
section 2.3.)

CD1009C checks whether a length clause can specify a non~default
size for a floating-point type; this implementation does not
support such sizes.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use length
clauses to specify non-default sizes for access types; this
implementation does not support such sizes.

The following 264 tests check operations on sequential, text, and
direct access files; this implementation does not support external
files:

CE2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE2105A..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)

CE2110A..D (4) CE2111A..I (9) CE2115A..B (2) CE2120A..B (2)
CE2201A..C (3) EE2201D..E (2) CE2201F..N (9) CE2203A

CE2204A..D (4) CE2205A CE2206A CE2208B
CE2401A..C (3) EE2401D CE2401E..F (2) EE2401G
CE2401H..L (5) CE2403A CE2404A..B (2) CE2405B
CE2406A CE2407A..B (2) CE2408A..B (2) CE2409A..B (2)
CE2410A..B (2) CE2411A CE3102A..C {3) CE3102F..H (3)
CE3102J..K (2) CE3103A CE3104A..C (3) CE3106A..B (2)
CE3107B CE3108A..B (2) CE3109A CE3110A
CE3111A..B (2) CE3111D..E (2) CE3112A..D (4) CE3114A..B (2)
CE3115A CE3119A EE3203A EE3204A
CE3207A CE3208A CE3301A EE3301B
CE3302A CE3304A CE3305A CE3401A
CE3402A EE3402B CE3402C..D (2) CE3403A..C (3)
CE3403E..F (2) CE3404B..D (3) CE3405A EE3405B
CE3405C..D (2) CE3406A..D (4) CE3407A..C (3) CE3408A..C (3)
CE3409A CE3409C..E (3) EE3409F CE3410A
CE3410C..E (3) EE3410F CE3411A CE3411C
CE3412A EE3412C CE3413A..C (3) CE3414A
CE3602A..D (4) CE3603A CE3604A..B (2) CE3605A..E (5)
CE3606A..B (2) CE3704A..F (6) CE3704M..0 (3) CE3705A..E (5)
CE3706D CE3706F..G (2) CE3804A..P (16) CE3805A..B (2)
CE3806A..B (2) CE3806D..E (2) CE3806G..H (2) CE3904A..B (2)
CE3905A..C (3) CE3905L CE3906A..C (3) CE3906E..F (2)

CE2103A, CE2103B, and CE3107A use an illegal file name in an
attempt to create a file and expect NAME_ERROR to be raised; this
implementation does not support external files and so raises
USE_ERROR. (See section 2.3.)

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 71 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in

2-3

the way expected by

the original tests.

B22003A B26001A B26002A B26005A B28003A B29001A B33301B
B35101A B37106A B37301B B37302A B38003A B38003B B38009A
B38009B B55A01A B61001C B61001F B61001H B61001I B61001M
B61001R B61001W B67001H B83A07A B83A07B B83A07C B83EO1C
B83EO1D BS83EO1lE B85001D B85008D B91001A B91002A B91002B
B91002C B91002D B91002E B91002F B91002G B91002H B91002I
B91002J B91002K B91002L B95030A B95061A B95061F B95061G
B95077A B97103E B97104G BAl100l1A BAl101B BC1109A BC1l1l09C
BC1109D BC1202A BC1202F BC1202G BE2210A BE2413A

C83030C and C86007A were graded passed by Test Modification as
directed by the AVO. These tests were modified by inserting
“PRAGMA ELABORATE (REPORT):;" before the package declarations at
lines 13 and 11, respectively. Without the pragma, the packages
may be elaborated prior to package Report's body, and thus the
packages' calls to function REPORT.IDENT INT at lines 14 and 13,
respectively, will raise PROGRAM_ERROR.

CA2009C and CA2009F were graded inapplicable by Evaluation
Modification as directed by the AvVoO. These tests contain
instantiations of a generic unit prior to the compilation of that
unit's body; as allowed by AI-00408 and AI-00506, the compilation
of the generic unit bodies makes the compilation unit that contains
the instantiations obsolete.

BC3204C and BC3205D were graded passed by Processing Modification
as directed by the AVO. These tests check that instantiations of
generic units with unconstrained types as generic actual parameters
are illegal if the generic bodies contain uses of the types that
require a constraint. However, the gereric bodies are compiled
after the units that contain the instantiations, and this
implementation creates a dependence of the instantiating units on
the generic units as allowed by AI-00408 and AI-00506 such that the
compilation of the generic bodies makes the instantiating units
obsolete~--no errors are detected. The processing of these tests
was modified by re-compiling the obsolete units; all intended
errors were then detected by the compiler.

CE2103A, CE2103B, and CE3107A were graded inapplicable by
Evaluation Modification as directed by the AVO. The tests abort
with an unhandled exception when USE_ERROR is raised on the attempt
to create an external file. This is acceptable behavior because
this implementation does not support external files (cf. AI-00332).

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is
described adequately by the information given in the initial pages
of this report.

For technical information .about this Ada implementation, contact:

Forrest Holemon
410 North 44th Street, Suite 320
Phoenix, Arizona 85008 (U.S.A.)
Telephone: 602-275-7172
Telefax: 602-275-7502

For sales information about this Ada implementation, contact:

Mike Halpin
410 North 44th Street, Suite 320
Phoenix, Arizona 85008 (U.S.A.)
Telephone: 602-275-7172
Telefax: 602-275-7502

Testing of this Ada implementation was conducted at the customer's
site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the AcCVC
[Pro92].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were
withdrawn because of test errors (item b; see section 2.1), those
that require a floating-point precision that exceeds the
implementation's maximum precision (item e; see section 2.2), and
those that depend on the support of a file system~-if none is
supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and f, below).

3~1

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing
the ACVC. The meaning and purpose of these parameters are
explained in [UG89]). The parameter values are presented in two
tables. The first table lists the values that are defined in terms
of the maximum input-line 1length, which is the value for
S$MAX IN LEN--also listed here. These values are expressed here as
aAda string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

SMAX IN LEN 126 -- Value of V

$BIG_ID1 (1..V=1 => 'A', V => 1)

$BIG_ID2 (1..V=1 => 'A', V => 12)

$BIG_ID3 (1..V/2 => 'A') & '3' & (1..V=-1-V/2 => 'A?)
$BIG_ID4 (1..V/2 => 'A') & '4' & (1..V=1-V/2 => ')
$BIG_INT LIT (1..V=3 => '0') & “298"

$BIG_REAL LIT (1..V=5 => '0') & "690.0"

$BIG_STRING1 tent & (1..V/72 => 'A') & vnme
$BIG_STRING2 rens & (1..V=1=-V/2 => 'A') & '1' & 1ume
$BLANKS (1..V=20 => ' 1)

$MAX_LEN_INT BASED_LITERAL
"2T" & (1..V-5 => '0') & "11:"

$MAX_LEN_REAL BASED LITERAL
"163" & (1..V-7 => '0') & "F.E:"

SMAX_STRING_LITERAL ‘'""' & (1..V-2 => 'A') & tnu:

The following table contains the values for the remaining

macro parameters.

Macro Parameter

ACC_SIZE
ALIGNMENT
COUNT_LAST
DEFAULT MEM_SIZE
DEFAULT_STOR_UNIT
DEFAULT_SYS_NAME
DELTA_DOC
ENTRY_ADDRESS
ENTRY_ADDRESS1
ENTRY_ADDRESS2
FIELD_LAST

FILE TERMINATOR
FIXED_NAME

FLOAT_ NAME
FORM_STRING
FORM_STRING2

GREATER THAN DURATION

GREATER_ THAN __DURATION_BASE_LAST

GREATER THAN FLOAT BASE_LAST

GREATER _ THAN FLOAT " SAFE_ _LARGE
GREATER THAN SHORT _ " FLOAT _SAFE_LARGE

HIGH PRIORITY
ILLEGAL _EXTERNAL_FILE_ NAME1l
ILLEGAL EXTERNAL . , FILE_NAME2

Macro Value

00 S0 00 60 09 50 S0 00 40 08 S5 6 S0 06 8

32

1

32767

1_048_576

16

IAPX186
2#1.04#E-31
(140,0)

(141,0)

(142,0)

35

ASCII.SUB
NO_SUCH_FIXED_TYPE
SHORT_SHORT_FLOAT

"CANNOT _RESTRICT_FILE_CAPACITY"

8 08 00 o¢ g0 00 o0

75_000.0

131_073.0

16#1.04E+32
16#5.FFFF_FO#E+31
1.0E308

31
\NODIRECTORY\FILENAME

THIS-FILE-NAME-IS-TOO-LONG-FOR-MY-SYSTEM

INAPPROPRIATE LINE_LENGTH
INAPPROPRIATE_PAGE_LENGTH
INCLUDE_PRAGMA1

INCLUDE_PRAGMA2

INTEGER_FIRST
INTEGER_LAST
INTEGER _LAST PLUS_1
INTERFACE LANGUAGE-
LESS THAN DURATION

LESS THAN DURATION_BASE_FIRST

LINE_ _TERMINATOR
LOW_PRIORITY
MACHINE_CODE_STATEMENT

MACHINE_CODE_TYPE
MANTISSA_DOC

-1
-1

INCLUDE (“A28006D1.ADA")

INCLUDE ("B28006E1.ADA")
-32768
32767
32768
ASM86
-75_000.0
-131_073.0
ASCII.CR
0

MACHINE_INSTRUCTION' (NONE,m NOP) ;

REGISTER_TYPE
31

MAX_DIGITS

MAX_INT

MAX_INT PLUS_1
MIN_INT

NAME

NAME_LIST
NAME_SPECIFICATION1

NAME SPECIFICATIONZ
NAME _ SPECIFICATION3

NEG_BASED_INT
NEW_MEM_SIZ2E
NEW_STOR_UNIT
NEW_SYS_NAME
PAGE_TERMINATOR
RECORD_DEFINITION
RECORD_NAME
TASK_SIZE
TASK_STORAGE_SIZE
TICK
VARIABLE_ADDRESS
VARIABLE ADDRESS1
VARIABLE_ADDRESS2
YOUR_PRAGMA

_“

08 06 &0 20 08 0% oo

15

2147483647
2147483648
-2147483648
SHORT_SHORT _INTEGER
IAPX186

DISKSAWC_2: [CROCKETTL. ACVCll DEVELOPMENT] X2120A
DISKSAWC_2:[CROCKETTL. ACVCll DEVELOPMENT]X2120B

DISK$AWC_2:[CROCKETTL. ACVCll DEVELOPMENT]X3119A

16#FFFFFFFF#

1_048_576

16

IAPX186

ASCII.FF

RECORD NULL;END RECORD;
NO_SUCH_MACHINE_ CODE_TYPE
16

1024

0.000_000_125

(16#0%, 16#1FF9#)
(16#4#,16#1FF94#)
(16#8#%,16#1FF9o#)
EXPORT_OBJECT

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

5§ THE ADA COMPILER

The Ada Compiler compiles all program units within the specified source file and insents the
generated objects into the current program library. Compiler options are provided to allow the
user control of optimization, run-time checks, and compiler input and output options such as list
files, configuration files, the program library used, eic.

The input to the compiler consists of the source file, the configuration file (which controls the

format of the list file), and the compiler options. Section 5.1 provides a list of all compiler
options, and Section 5.2 describes the source and configuration files.

If any diagnostic messages are produced during the compilation, they are output on the diagnostic

file and on the current output file. The diagnostic file and the diagnostic messages are described
in Section 5.3.2.

Output consists of an object placed in the program library, diagnostic messages, and optional
lisings. The configuration file and the compiler options specify the format and contents of the
list information. Output is described in Section §5.3.

The compiler uses a program library during the compilation. The compilation unit may refer to
units from the program library, and an internal repr.sentation of the compilation unit will be
included in the program library as a result of a successful compilation. The program library is
described in Chapter 3. Section 5.4 briefly describes how the Ada compiler uses the library.

5.1 Invoking the Ada Compiler

Invoke the Ada compiler with the following command to the SunOS shell:
$ ada {<option>} <source-file-name>

where the options and parameters are:

35

DACS-80x86 User's Guide

Ada Compiler
OPTION DESCRIPTION REFERENCE
-[nolauto_inline Specifies whether local subprograms shouid be 5.1.1
inline expanded.
«check Controls run-time cherks. 512
-configuration_file Specifies the configuration file used by the 5.13
compiler.
-{noldebug Includes symbolic debugging information in 5.14

program Library. Does not include symbolic
information.

«[nolfixpoint_rounding Generates fixed point rounding code. Avoids fixed 515
point rounding code.
«{nolfloat_allowed Flags generation of float instructions as 5.1.6
eror if selected.
«{nojlibrary Specifies program library used. 513
-[no]list Writes 2 source listing on the list file. 518
-{noloptimize Specifies compiler optimization. 5.19
-[nojprogess Displays compiler progress. 5.1.10
«[nolxref Creates a cross reference listing. 5.1.1
-(nojsave_source Copies source to program library. 5.1.12
-[nojtarget_debug Includes Intel debug information. Does not include 5.1.13
Intel debug information.
-unit Assigns a specific unit number to the compilation 5.1.14
(must be free and in a sublibrary).
-recompile Interpret the file name as a compilation unit body
that must be recompiled from library. 5115
-specification With -recompile interpret file name as a
compilation unit specification rather than body. 5.1.16
Examples:

$ ada -list testprog

This example compiles the source file testprog.ada and generates a list file with the name

testprog.lis.

$ ada ~library my_ library test

This example compiles the source file test.ada into the library my_library.

Default values exist for most options as indicated in the following sections. Option names may
be abbreviated (characters omined from the right) as long as no ambiguity arises.

36

ﬂ

- DACS-*0x86 User's Guide
Ada Compiler

<source-flle-name>

The Ada compiler has one mandatory parameter that should specify the Ada source file.
This parameter specifies the text file containing the source text to be compiled. If the file type
is omitted in the source file specification, the file type “.ada” is assumed by default.

The allowed format of the source text is described in Section 5.2.1.

Below follows a description of each of the available options to the invocation of the Ada
compiler.

5.1.1 «[nojauto_inline

-auto_inline local | global
-noauto_inline (default)

This option specifies whether subprograms should be inline expanded. The inline expansion only
occurs if the subprogram has less than 4 object declarations and less than 6 staiements, and if the
subprogram fulfills the requirements defined for pragma INLINE (see Section C.2.3). LOCAL
specifies that only inline expansion of locally defined svbprograms should be done, while
GLOBAL will cause inline expansion of all subprograms, including subprograms from other units.

§.1.2 -check

-check [<keyword> = ON | OFF { ,ckeyword> = ON | OFF }]
~check ALL=ON (default)

-check specifies which run-time checks should be performed. Setting a run-ime check o ON
enables the check, while senting it to OFF disables the check. All run-time checks are enabled by
default. The following explicit checks will be disabled/enabled by using the name as <keyword>:

ACCESS Check for access values being non NULL.
ALL All checks.

DISCRIMINANT Checks for discriminated fields.
ELABORATION Checks for subprograms being elaborated.

INDEX Index check.

LENGTH Array length check.

OVERFLOW Explicit overflow checks.

RANGE Checks for values being in range.
STORAGE Checks for sufficient storage available,

37

_>

~ DACS-80x86 User's Guide
Ada Compiler

§.13 -configuration_file

-configuration_file <file-spec>
-configuration_file config (default)

This option specifies the configuration file to be used by the compiler in the current compilation.
The configuration file allows the user to format compiler listings. set error limits, etc. If the
option is omitted the configuration file config located in the same directory as the Ada compiler
is used by default Section 5.2.2 contains a description of the configuration file.

5.1.4 -[no]debug

-debug
-nodebug (defauit)

Generate debug information for the compilation and store the information in the program library.
This is necessary if the unit is to be debugged with the DDC-I Ada Symbolic Cross Debugger.
Note that the program must also be linked with the -debug option, if the program is to be
debugged with the DDC-1 Ada Symbolic Cross Debugger. See Section 6.5.11.

5.135 -[no)fixpoint_rounding

-fixpoint_rounding (default)
-nofixpoint_rounding

Normally all inline generated code for fixed point MULTIPLY and DIVIDE is rounded, but this

may be avoided with -nofixpoint_rounding. Inline code is generated for all 16 bit fixed point
types and for 32 bit fixed point types, when the target is 80386PM or 80486PM.

5.1.6 -[no]float_allowed

~float_allowed (default)
-nofloat_allowed

Float instruction generation may be flagged as emors, if -nofloat is selected. This is for use in
sysiems, where no floating point processor (nor emulator) is available. Notice that TEXT_IO uses
floats in connection with FLOAT_IO and FIXED_lIO.

38

f

DACS-80x86 User’'s Guide
~ Ada Compiler

-. 5.1.7 library

-library <flie-spec>
-library Sada_library (default)

This opton specifies the current sublibrary that will be used in the compilation and will receive
the object when the compilation is compiete. By specifying a cumrent sublibrary, the current
program library (current sublibrary and ancestors up (0 root) is also implicitly specified.

If this option is omitted, the sublibrary designated by the environmental variable ada_library is
used as the current sublibrary. Section 5.4 describes how the Ada compiler uses the library.

5.1.8 -[no]list

-list
-nolist (default)
-list-specifies that a source listing will be produced. The source listing is written to the list file,

which has the name of the source file with the extension Jis. Section 5.3.1.1 contains a description
of the source listing.

If -nolist is active, no source listing is produced. regardless of LIST pragmas in the program or
diagnostic messages pmdu;ed.

5.1.9 -optimize

-optimize { <keyword> = on | off { ,<keyword> =on | off }]
-optimize all=off

This option specifies which optimizations will be performed during code generation. The possible
keywords are: (casing is irrelevant)

all All possible optimizations are invoked.

check Eliminates superfluous checks.

cse Performs common subexpression elimination including common
address expressions.

fet2proc Change function calls returning objects of constrained array types
or objects of record types (0 procedure calls.

reordering Transforms named aggregates to positional aggregates and named
parameter associations (0 positional associations.

stack_height Performs stack height reductions (also called Aho Ullman
reordering).

block Optimize block and call frames.

Setting an optimization to on enables the optimization, while setting an optimization to off disables
the optimization. All optimizations are disabled by default. In addition to the optional
optimizations, the compiler always performs the following optimizations: constant folding, dead
code elimination, and selection of optimal jumps.

39

[ey

DACS-80x86 User’s Guide
Ada Compiler

5.1.10 -[no]progress

-progress
-noprogress (default)

When this option is given, the compiler will output data about which pass the compiler is
currently running.

5.1.11 -[nolxref

-xref
-noxref (default)

A cross-reference listing can be requested by the user by means of the option -xref. If the -xref

option is given and no severe or fatal errors are found during the compilation, the cross-reference
listing is written 10 the list file. The cross-reference listing is described in Section ?.

5.1.12 -[nolsave_source

-save_source (default)
-nosave_source

When -save.source is specified, a copy of the compiled source code is placed in the program
library. If -nosave_source is used, source code will not be retained in the program library.

Using -nosave_source, while heiping to keep library sizes smaller, does affect the operation of

the recompiler, see Chapter 7 for more defails. Also, it will not be possible to do symbolic

debugging at the Ada source code level wita the DACS-80x86 Symbolic Ada Debugger, if the
source code is not saved in the library.

§.1.13 -[noltarget_debug

-target_debug
-notarget_debug (default)

Specifies whether symbolic debug information on standard OMF is included in the object file.
Currently the linker does not support the OMF debug information.

This option may be used when debugging with standard OMF tools (i.e., FICE).

#

DACS-80x86 User's Guide
~ Ada Compiler

.. 5.1.14 -unit
-unit = <unit_number>

The specified unit number will be assigned to the compilation unit if it is free and it is a legal
unit number for the library.

5.1.15 -recompile
-recompile
The file name (source) is interpreted as a compilation unit name which has its source saved from

a previous compilation. If -specification is not specified, it is assumed to be body which must be
recompiled.

5.1.16 -specification
-specification

Works only together with -recompil, see Section 5.1.1S.

5.2 Compiler Input

Input to the compiler consists of the command line options, a source text file and, optionally, a
condiguration file.

5.2.1 Source Text

The user submits one file containing a source text in each compilation. The source text may
consist of one or more compilation units (see ARM Section 10.1).

. The format of the source text must be in ISO-FORMAT ASCII. This format requires that the
source text is a sequence of ISO characters (ISO standard 646), where each line is terminated by

sither one of the following termination sequences (CR means carriage retum, VT means vertical
tabulation, LF means line fecd, and FF mcans form feed):

« A sequence of one or more CRs, where the sequence is neither immediately preceded nor
immediately followed by any of the characters VT, LF, or FF.

« Any of the characters VT, LF, or FF, immediately preceded and followed by a sequence of zero
or more CRs.

In general, ISO control characters are not permitted in the source text with the following
exceptions:

41

(e

DACS-80x86 User's Guide
~ Ada Compiler

. + The horizontal tabulation (HT) character may be used as a separator between lexical units.
» LF, VT, FF, and CR may be used to terminate lines, as described above.
The maximum number of characters in an input line is determined by the contents of the

configuration file (see section 5.1.3). The control characters CR. VT, LF, and FF are not

considered a part of the line. Lines containing more than the maximum number of characters are
truncated and an error message is issued.

§.22 Configuration File

Cenain processing characteristics of the compiler, such as format of input and output, and error
limit, may be modified by the user. These characteristics are passed to the compiler by means
of a configuration file, which is a standard SPARC/SunOS text file. The contents of the
configuration file must be an Ada positional aggregate, written on one line, of the type
CONFIGURATION_RECORD, which is described below.

The conﬁgumidn file (config) is not accepted by the compiler in the following cases:

The syntax does not conform with the syntax for positional Ada aggregates.

A value is outside the ranges specified.

A value is not specified as a literal.

LINES_PER_PAGE is not greater than TOP_MARGIN + BOTTOM_MARGIN.
The aggregate occupies more than one line.

If the compiler is unable 10 accept the configuration file, an error message is written on the
current output file and the compilation is terminated.

This is the record whose values must appear in aggregate form within the configuration file. The
record declaration makes use of some other types (given below) for the sake of clarity.

42

'-......-l-III.-Il-I-IlIIIlIIII---I-------.----(:;

DACS-80x86 User's Guide
Ada Compiler

type CONFIGURATION_RECORD is

record
IN_FORMAT: INFORMATTING:
OUT_FORMAT: OUTFORMATTING:
ERROR_LIMIT: INTEGER;

end record;
type INPUT_FORMATS is (ASCII):

type INFORMATTING is

record
INPUT_FORMAT: INPUT_FORMATS:
INPUT_ LINELENGTH: INTEGER range 70..250;

end record:

type OUTFORMATTING is

record
LINES_PER_PAGE : INTEGER range 30..100;
TOP_MARGIN : INTEGER range 4.. 90;
BOTTOM_MARGIN : INTEGER range O0.. 90;
. OQUT_LINELENGTH : INTEGER range 80..132;

SUPPRESS_ERRORNO : BOOLEAN:;

end record:

The outformatting parameters have the following meaning:

)

2)

3)

4)

5)

LINES_PER_PAGE: specifies the maximum number of lines ..itten on each page
(including top and bottom margin).

TOP_MARGIN: specifies the number of lines on top of each page used for a standard
heading and blank lines. The heading is placed in the middle lines of the top margin.

BOTTOM_MARGIN: specifies the minimum number of lines left blank in the bottom of
the page. The number of lines available for the listing of the program is LINES
PER_PAGE - TOP_MARGIN - BOTTOM_MARGIN.

OUT_LINELENGTH: specifies the maximum number of characters wrirten on each line.
Lines longer than OUT_LINELENGTH are separated into two lines.

SUPPRESS_ERRORNQO: specifies the format of error messages (see Section 5.3.5.1).

The name of a user-supplied configuration file can be passed w0 the compiler through the

configuration_file option. DDC-] supplies a default configuration file (config) with the following
content:

43

P

DACS-80x86 User's Guide
= Ada Compiler

((ASCIL, 126), (48,5.3,100,FALSE), 200)

T
Top
margin

Lines

page

Bottom
margin

Out_line_length

Figure 5-1. Page Layout

§.3 Compiler Output
The compiler may produce output in the list file, the diagnostic file, and the current output file.
It also updates the program library if the compilation is successful. The present section describes

the text output in the three files mentioned above. The updating of the pmgnm library is
described in Section 5.4.

The compiler may produce the following text output:

1) A listing of the source text with embedded diagnostic messages is written on the list file,
if the option -list is active.

2) A compilation summary is written on the list file, if -list is active.

3) A cross-reference listing is written on the list file, if -xref is active and no severe or fatal
errors have been detected during the compilation.

4) If there are any diagnostic messages, a diagnostic file containing the diagnostic messages
is written.

5) Diagnostic messages other than wamings are written on the current output file.

[

‘ DACS-80x36 User's Guide
- Ada Compiler

.. §.3.1 The List File

The name of the list file is identical to the name of the source file except that it has the file type
"lis". The file is located in the current (defauit) directory. If any such file exists prior to the
compilation, the newest version of the file is deleted. If the user requests any listings by
specifying the options -list or -xref, a new list file is created.

The list file may include one or more of the following parts: a source listing, a cross-reference
listing, and a compilation summary.

The parts of the list file are separated by page ejects. The contents of each part are described in
the following sections.

The format of the output on the list file is controlled by the configuration file (see Section 5.2.2)
and may therefore be controlled by the user.

§.3.1.1 Source Listing

-

A source listing is an unmodified copy of the source text. The listing is divided into pages and
each line is supplied with a line number.

The number of lines output in the source listing is governed by the occurrence of LIST pragmas
and the number of objectionable lines.

« Pants of the listing can be suppressed by the use of the LIST pragma.

» A line containing a construct that caused a diagnostic message 0 be produced is printed even
if it occurs at a point where listing has been suppressed by a LIST pragma.

5.3.1.2 Compilation Summary

At the end of a compilation, the compiler produces a summary that is output on the list file if the
option -list is active.

The summary contains information about:

1) The type and name of the compilation unit, and whether it has been compiled successfully
or not.

2) The number of diagnostic messages produced for each class of severity (see Section
5.32.1).

3) Which options were active.
4) The full name of the source file.
S) The full name of the current sublibrary.

6) The number of source text lines.

45

_

- DACS-80x86 User's Guide
Ada Compiler

T) The size of the code produced (specified in bytes).
8) Elapsed real time and elapsed CPU time.

9) A "Compilation terminated” message if the compilation unit was the last in the compilation
or "Compilation of next unit initiated” otherwise.

§3.13 Cross-Reference Listing

A cross-reference listing is an alphabetically sorted list of the identifiers, operators, and character
literals of a compilation unit. The list has an entry for each entity declared and/or used in the
unit, with a few exceptions stated below, Overloading is evidenced by the occurrence of multiple
entries for the same identifier.

For instantiations of generic units, the visible declaradons of the generic unit are included in the
cross-reference listing as declared immediately after the instantiation. The visible declarations are
the subprogram parameters for a generic subprogram and the declarations of the visible part of the
package declaration for a generic package.

For type declarations, all implicitly declared operations are included in the cross-reference listing.

Cross-reference information will be produced for every constituent character literal for string
literals.

The foliowing are not included in the cross reference listing:

* Pragma identifiers and pragma argument identifiers.

* Numeric literals.

* Record component identifiers and discriminant identifiers. For a selected name whose selector
gnef?r:n“au:n. record component or a discriminant, only the prefix generates cross-reference

* A parent unit name (following the keyword SEPARATE).

Each entry in the cross-reference listing contains:

+ The identifier with, at most, 15 characters. If the identifier exceeds 15 characters, a bar ("I)
is wrinen in the 16th position and the rest of the characters are not printed.

» The place of the definition, i.e., a line number if the emtity is declared in the curremt
compilation unit, otherwise the name of the compilation unit in which the entity is declared
and the line number of the declaration.

» The numbers of the lines in which the entity is used. An asterisk ("*") after a line number
indicates an assignment 10 a variable, initialization of a constant, assignments to functions, or
user-defined operators by means of RETURN statements. Please refer to Appendix B.3 for
examples.

46

[

DACS-80x86 User's Guide
~ Ada Compiler

5.32 The Diagnostic File

The name of the diagnostic file is identical to the name of the source file except that it has the
file type ".emr”. It is located in the current (default) directory. If any such file exists prior to the
compilation. the newest version of the file is deleted. If any diagnostic messages are produced
during the compilation a new diagnostic file is created.

The diagnostic file is a text file containing a list of diagnostic messages, cach followed by a line
showing the number of the line in the source text causing the message, and a blank line. There
is no separation into pages and no headings. The file may be used by an interactive editor to
show the diagnostic messages together with the erroneous source iext.

§.3.2.1 Diagnostic Messages

The Ada compiler issues diagnostic messages on the diagnostic file. Diagnostics other than
wamings also appear on the current output file. If a source text listing is required, the diagnostics
are also found embedded in the list file (see Section 5.3.1).

In a source listing, a diagnostic message is placed immediately afier the source line causing the
message. Messages not related to any parnicular line are placed at the top of the listing. Every
diagnostic message in the diagnostic file is followed by a line stating the line number of the
objectional line. The lines are ordered by increasing source line numbers. Line number 0 is
assigned 10 messages not related to any particular line. On the current output file the messages
appear in the order in which they are generated by the compiler.

The diagnostic messages are classified according to their severity and the compiler action taken:

Waming: Repornts a questionable construct or an error that does not influence the meaning of the
program. Wamings do not hinder the generation of object code.

Example: A waming will be issued for constructs for which the compiler detects will
raiss CONSTRAINT_ERROR at run time.
Error: Reports an illegal construct in the source program. Compilation continues, but no object
code will be generated.
Examples: most syntax errors: most static semantic errors.
Severe Reports an error which causes the compilation to be terminated immediately.
error. No object code is generated.

Example: A sevcre error message will be issued if a library unit mentioned by a
WITH clause is not present in the current program library.

47

DACS-30x86 User's Guide
Ada Compiler

Fatal Reports an error in the compiler system itself. Compilation is terminated immediately
eror: and no object code is produced. The user may be able to circumvent a fatal error by

correcting the program or by replacing program conmstructs with alternatives. Please
inform DDC-I about the occurrence of fatal errors.

The detection of more errors than allowed by the number specified by the ERROR_LIMIT
parameter of the configuration file (see section 5.2.2) is considered a severe error.

$322 Format and Content of Diagnostic Messages

For cenain syntactically incorrect constructs, the diagnostic message consists of a pointer line and
a text line. In other cases a diagnostic message consists of a text line only.

The pointer line contains a pointer (2 carat symbol #) (o the offending symbol or to an illegal
character.

The text line contains the following information:
» the diagnostic message identification "***"
« the message code XY-Z where
X is the message number
Y is the severity code. a letter showing the severity of the eror:
W. waming
E: emor

S: severe error
F: fatal error

Z is an integer which, together with the message number X, uniquely identifies the compiler
location that generated the diagnostic message: Z is of importance mainly to the compiler
maintenance team -- it does not contain information of interest to the compiler user.

The message code (with the exception of the severity code) will be suppressed if the

parameter SUPPRESS_ERROR_NO in the configuration file has the value TRUE (see
section 5.2.2).

» the message text; the text may include one context dependent field that contains the name of

the offending symbol; if the name of the offending symbol is longer than 16 characters only
the first 16 characters are shown.

Examples of diagnostic messages:
**» 18W-3: Warning: Exception CONSTRAINT_ERROR will be raised here
#x* 320E-2: Name OBJ does not denote a type

*=+ S535E-0: Expression in return statement missing

438

m

DACS-80x86 User's Guide
~ Ada Compiler

*»» 15085-0: Specification for this package body not present in the library

5.4 The Program Library

This section briefly describes how the Ada compiler changes the program library. For a more
general description of the program library, the user is referred to Chapter 3.

The compiler is allowed to read from all sublibraries constituting the current program library, but
only the current sublibrary may be changed.

5.4.1 Correct Compilations

In the following examples it is assumed that the compilation units are correctly compiled, i.e., that
no errors are detected by the compiler.

-

Compilation of a library unit which is a declaration

If a declaration unit of the same name exists in the curment sublibrary, it is deleted together with
its body unit and possible subunits. A new declaration unit is inserted in the sublibrary, together
with an empty body unit.

Compilation of a library unit which is a subprogram body

A subprogram body in a compilation unit is treated as a secondary unit if the current sublibrary
contains a subprogram declaration or a generic subprogram declaration of the same name and this
declaration unit is not invalid. In all other cases it will be treated as a library unit, i.e.

» when there is no library unit of that name

« when there is an invalid declaration unit of that name

» when there is a package declaration, generic package declaration, an instantiated package, cr
subprogram of that name

Compilation of a library unit which is an instantiation

A possibie existing declaration unit of that name in the current sublibrary is deleted together with
its body unit and possible subunits. A new declaration unit is inserted.

Compilation of a secondary unit which is a library unit body

The existing body is deleted from the sublibrary together with its possible subunits. A new body
unit is inserted.

49

DACS-80x86 User's Guide
Ada Compiler
Compilation of a secondary unit which is a subunit

If the subunit exists in the sublibrary it is deleted together with its possible subunits. A new
subunit is inserted.

5.4.2 Incorrect Compilations
If the compiler detects an error in a compilation unit, the program library will remain unchanged.

Note that if a file consists of several compilation units and an error is detected in any of these
compilation units, the program library will not be updated for any of the compilation units.

8.5 Instantiation of Generic Units

This section describes the rules after which generic instantation is performed.

§.5.1 Order of Compiiation

When instantiating a generic unit, it is required that the entire unit, including body and possibie
subunits, be compiled before the first instantiation. This is in accordance with the ARM Chapter
10.3 (1).

5.5.2 Generic Formal Private Types

The present section describes the treatment of a generic unit with a generic formal private type,
where there is some construct in the generic unit that requires that the corresponding actual type
must be constrained if it is an ammay lype or a type with discriminants, and there exists
instantiations with such an unconstrained type (see ARM, Section 12.3.2(4)). This is considered
an illegal combination. In some cases the error is detected when he instantiation is compiled, in
other cases when a constraint-requiring construct of the generic unit is compiled:

1) If wthe instantiation appears in a later compilation unit than the first constraint-requiring
construct of the generic un't, the error is associated with the instantiation which is rejected
by the compiler.

2) If the instantiation appears in the same compilation unit as the first constraint-requiring
construction of the generic unit, there are two possibilities:

a) If there is a constraimt-requiring construction of the generic unit afier the instantiation,
an error message appears with the instantiation.

b) If the instantiation appears after all constraint requiring constructs of the generic unit
in that compilation unit, an error message appears with the constraint-requiring
construct, but will refer to the illegal instantiation.

50

DACS-80x86 User's Guide
Ada Compiler

3) The instantiation appears in an earlier compilation unit than the first constraini-requiring
construction of the generic unit, which in that case will appear in the generic body or a
subunit. If the instantiation has been accepted, the instantiation will correspond to the
generic declaration only, and not include the body. Nevertheless, if the generic unit and
the instantiation are iocated in the same sublibrary, then the compiler will consider it an
error. An error message will be issued with the constraint-requiring construct and will refer
to the illegal instantiaion. The unit containing the instantiation is not changed, however,
and will not be marked as invalid.

5.6 Uninitialized Variables

Use of uninitialized variables is not flagged by the compiler. The effect of a2 program that refers
to the value of an uninitialized variable is undefined. A cross-reference listing may help to find
uninitialized variables.

5.7 Program Structure and Compilation Issues

The following limitations apply to the DACS-80x86 Ada Compiler Systems for the Real Address
Mode and 286 protected mode only:

+ The Ada compiler supports a "modified lo-ge” memory model for data references. The
"modified large” memory model associates one data segment for each hierarchical sublibrary in
the Ada program library. All package data declared within a sublibrary is efficiently referenced
from Ada code compiled into the same sublibrary. A slight increase in code size results from
referencing package data compilcd into 2 different hierarchical level. Intel's medium memory
model can thus be obtained by utilizing only one level of Ada program library, the root
sublibrary.

« The Ada compiler supports a large memory mode! for executable code. Although the size of
a single compilation unit is restricted to 32K words, the total size of the code portion of a
program is not restricted.

» The space available for the static data of a compilation unit is 64K - 20 bytes.

« The space available for the code generated for 2 compilation unit is limited to 32K words.
* Any single object cannot exceed 64K - 20 bytes.

The following limitations apply to all DACS-80x86 products:

+ Each source file can contain, at most, 32,767 lines of code.

+ The name of compilation units and identifiers may not exceed the number of characters given
in the INPUT_LINELENGTH parameter of the configuration file.

« An integer literal may not exceed the range of LONG_INTEGER, a real literal may not exceed
the range of LONG_FLOAT.

51

pr———

DACS-80x86 User's Guide
Ada Compiler

* The number of formal parameters permined in a procedure is limited to 127 per parameter
specification. There is no limit on the number of procedure specifications. For exampie, the
declaration:

procedure OVER_LIMIT (INTEGER(O1,
INTEGEROZ,

INTEGER166: in INTEGER);

exceeds the limit, but the procedure can be accomplished with the following:

procedure UNDER_LIMIT (INTEGERO1l : in INTEGER;
INTEGERO2 : in INTEGER;

INTEGER166 : in INTEGER);

The above limitations are diagnosed by the compiler. In practice these limitations are seldom
restrictive and may easily be circumvented by using subunits, separate compilation, or creating new
sublibraries.

5.8 Compiler Code Optimizations

DDC-I's Ada compiler for the iAPX 80x86 microprocessor family generates compact, efficient

code. This efficiency is achieved, in part, by the compiler’s giobal optimizer. Optimizations
performed include:

Common sub-expression elimination
Elimination of redundant constraint checks
Elimination of redundant elaboration checks
Constant folding

Dead code elimination

Optimal register allocation

Selection of optimal jumps

Optional ryn-time check suppression

52

.

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and
not to this report.

6 THE ADA LINKER

The DACS linker must be executed to create an executable program in the target environment.
Linking is a two stage process that includes an Ada link using the compilation units in the Ada
program library, and a target link to integrate the application code, run-time code. and any
additional configuration code developed by the user. The linker performs these two stages with a
single command, providing options for controlling both the Ada and target link processes.

This chapter describes the link process, except for those options that configure the Run-Time

System, which is described in detail in Chapter 7.

6.1 Invoking the Linker

Enter the following command at the shell to invoke the linker:
$ ada_link {<option>} <unit-name>

where the options and parameters are:

Ada Linker Options

OPTION DESCRIPTION REFERENCE
-(no]debug Links an application for use with the 6.5.11
DACS-80x86 Symbolic Cross Debugger.
-enable_task_trace Enables trace when a task terminates in 6.5.28
unhandled exception.
-exception_space Defines area for exception handling in task stack. 6.5.29
-{nojextract Extracts Ada Object modules 6.5.14
-interrupt_entry_table Range of interrupt entries. 6.5.27
-library The library used in the link. 6.5.7
-[nojiog Specifies creation of a log file. 6.5.9
-It_segment_size Library task default segment size. 6.5.23
-It_stack_size Libraiy task default stack size. 6.5.22
-mp_segment_size Main program segment size. 6.5.25
-mp_stack_size Main program stack size. 6.5.24
-{nojnpx Use of the 80x87 numeric coprocessor. 6.5.16
-options Specifies target link. options. 6.5.6
-priority Default task priority. 6.5.18
-reserve_stack Size of reserve stack. 6.5.21
-rms Select Rate Monotonic Scheduling Run-Time 6.5.13
Kemel (optional).
-[no]root_extract Using non-DDC-I units in the root library. 6.5.10

53

ﬁ—

DACS-80x86 User's Guide

The Ada Linker
~{no]rts Includes or excludes the run-time system. 6.5.12
-searchlib Target libraries or object modules to include 6.5.4
in target link.
-selective_link Removes uncalled code from final program. 6.5.8
-sign_on Produce sign on and sign off messages. 6.5.30
-stop_before_link Performs Ada link only. 6.5.5
-tasks Maximum number of tasks or non-tasking 6.5.17
application.
-task_storage_size Tasks default storage size. 6.5.26
-template Specifies template file. 6.5.15
-timer Timer resolution. 6.5.20
-time_slice Task time slicing. 6.5.19

All options may be abbreviated (characters omitted from the right) as long as no ambiguity arises.
Casing is significant for options but not for options keywords.

Note: -Several simulianeous links of the same program should not be performed in the same
directory.

6.1.1 Diagnostic Messages

Diagnostic messages from the Ada Linker are output on the current output file and on the optional
log file. The messages are output in the order they are generated by the linker.

The linker may issue two kinds of diagnostic messages: wamings and severe errors.

A waming reports something which does not prevent a successful linking, but which might be an
error. A waming is issued if there is something wrong with the body unit of a program unit
which formally does not need a body unit, e.g. if the body unit is invalid or if there is no object
code container for the body unit. Warnings are only output on the log file, not on the current
output file. The linking summary on the log file will contain the total number of wamings issued,
even if the issued wamings have not been output.

A severe error message reports an error which prevents a successful linking. Any inconsistency
detected by the linker will, for instance, cause a severe error message, ¢.g. if some required unit
does not exist in the library or if some time stamps do not agree. If the linker is used for
consequence examination, all inconsistencies introduced by the hypothetical recompilations are
reported as errors.

A unit not marked as invalid in the program library may be reported as being invalid by the
linker if there is something wrong with the unit itself or with some of the units it depends on.

6.2 The Linking Process

The linking process can be viewed as two consecutive processes. Both are automatically carried
out when issuing the link command ada.link.

_—f

DACS-80x86 User's Guide
The Ada Linker

The first process constitutes the Ada link process and the second constitutes the target link
process.

The Ada link process
* retrieves the required Ada object modules from the program library,
« determines an elaboration order for all Ada units,

« creates a module containing the User Configurable Data (UCD) from the specified configuration
options to the linker and

» creates a shell script that carries out the target link process (i.c.. dinkbldx86). The locate/build
phase is an integral pant of the target link.

If the option -stop._before_link is NOT specified (default), the above script is executed
automatically. Otherwise the linking process is halted at this point.

When -stop_before_link is specified, all temporary files are retrieved for inspection or
modification. The target linker is invoked by executing the shell script.

6.2.1 Temporary Files

The following temporary files are in use during the link phase:

<main_program>_link.com The shell script which invokes the target linker.

<main_program>_elabcode.o The object code for the calling sequence of the elaboration
code.

<main_program>_ucd.o The cbject code generated from the RTS configuration

options (see Section 7.2).

<main_program>_uxxxxx.o The Ada object modules which have been extracted from the
program library. xxxxx is the unit number of the Ada unit

55

[F5 s s

DACS-80x86 User's Guide
The Ada Linker

)
g
I

Figure 6-3. The Linking Process

The following components make up the run-ime system:
1) User configurable portion of the RTS

a) User configurable data (UCD) and
b) User configurable code (UCC)

2) Permanent part of the RTS

a) Non-tasking RTS (r1l.lib) or
b) Tasking RTS (r121lib)
¢) RMS Tasking RTS (r13.1ib)

The User Configurable Code defined by the environmental variable ada_ucc_lib is included in the
link. If no tasking has been specified, then the RTS non-tasking library (r11.lib) will be included.
If tasking has been specified, then support for tasking will be included (r12.lib or, when -rms,
r13.lib).

56

_

DACS-80x86 User's Guide
The Ada Linker

The output of the linker step is an absolute executable object file with the extension “.dat” and
a map file with the extension ".mpS".

6.22 Environmental Variables

When a link is executed, 2 number of files are referred to and most are accessed through

environmental variables. The locate/build phase uses the control file $ada_ucc_dir/config.bid_ddci,
the remaining variables are:

VARIABLE PURPOSE
ada_system_library Identifies the root library where the system compilation units reside.
ada_library Identifies the default library used by all DACS-80x86 tools. It is the

lowest level sublibrary in the program library hierarchy.

ada_root_lib Identifies the OMF library where the system library units have been
extracted from the system library. By having a separate Library for the
root compilation units, the link process is much faster than otherwise
having 10 extract each unit from the system library for each link.

ada_rl1_lib Identifies the OMF library for the Permanent Part of the non-tasking
version of the Run-Time System.

ada_rl12_lib Identifies the OMF library for the Permanent Part of the tasking version
of the Run-Time System.

ada_r13_lib Identifies the OMF library for the Permanent Part of the optional Rate
Monotonic scheduling Run-Time System.

ada_ucc_lib Identifies the OMF library for the User Configurable Code portion of
the Run-Time System.

ada_template Identifies the template file for the Linker.

ada_ucc.dir Identifies the directory of the current UCC.

With each of these environmental variables, the name will differ depending on how the system
was instalied (ada86, adal186 etc). Throughout this document ada is assumed. For example, the
environmental variables for the root library for the 80186 version of the compiler would be

adal86_root_lib, and the RTS UCC library environmental variables for the 8086 version would
be ada86_ucc_lib.

57

_ﬁ

DACS-80x86 User's Guide
The Ada Linker

6.3 Run-Time System Overview

The Run-Time System for DACS-80x86 is defined as all code and data. other than the code and
data produced by the code generator, required to make an embedded system application operate
properly on a specific hardware system.

In general, there are two major components that make up the Run-Time System.

1) Code and data assumed 1o exist by the code generator. This is hardware independent and
known as the RTS Permanent Part.

2) Code and data tailoring the application with respect to the characteristics of the hardware
and other requirements of the embedded systems developer. This code is called the RTS
User Configurable Part.

Both of the above components consist of modular OMF libraries. The modules are only included
in the user program if they are needed, i.e., if a call or reference is made to the module. This
ensures a compact RTS (typical applications are 4 KB to 10 KB).

The RTS Permanent Part does not make any assumptions about the hardware other than an 80x86
and some amount of memory available.

There are several versions of the RTS User Configurable Pant available for different development
targets. Also, the source code is provided to allow the modification of the User Configurable
Code (UCC) to operate on other targets. Refer to the RTS Configuration Guide for compiete
information on modifying the UCC.

DDC-I has carefully analyzed and selected the parts of the Run-Time Sysiem that must be
configurabie for hardware independence, freeing the user from major rewrites whenever the
Run-Time Sysiem is retargeted while, stll allowing for almost unlimited adaptability.

Four important features of the run-time system are:

¢ It is small

» It is completely ROMable

« It is configurable

+ It is efficient

Conceptually, an Ada run-time system can be viewed as consisting of the following components:

Executive, i.e., the start-up mechanism

Storage Management

Tasking Management
Input/Output
Exception Handling

58

DACS-80x86 User's Guide
The Ada Linker

+ Run-Time Library Routines
» Package CALENDAR support routines

The run-time system (RTS) can be configured by the user through Ada Linker command options.

The Ada Linker will generate appropriate data structures to represent the configured characteristics
(UCD).

Two versions of the RTS are supplied, one including tasking and one excluding tasking. The

linker selects the RTS version including tasking only if the option -tasks is present or -tasks n
is present and n > 0. Otherwise, the linker selects the RTS version excluding tasking.

6.4 Linker Elaboration Order

The elaboration order is primarily given by the unit dependencies, but this leaves some freedom
here and there to arbitrarily choose berween two or more altematives. This arbitrary is in the
DACS-80x86 linker controlled by the spelling of the involved library units, in order for "free”
units to become alphabetically sorted.

Recompiling from scraich, an entire system may thus affect the allocation of unit numbers, but the
elaboration order remains the same.

It is also antempted to elaborate "body after body", so that a body having a with to a specification,
will be attempted elaborated after the body of this specification.

Also elaboration of units from different library levels is attempted to complete elaboration of a
father-level prior to the son-level.

This strategy should in many cases reduce the need for resetting pragma ELABORATE.

6.5 Ada Linker Options

This section describes in detail the Ada linker option and pirameter&

6.5.1 The Parameter <unit-name>

<unit-name>

The <unit_name> must be a library unit in the current program library, but not necessarily of the
current sublibrary.

Note that a main program must be a procedure without parameters, and that <unit-name> is the
identifier of the procedure, not a file specification. The main procedure is not checked for
parameters, but the execution of a program with a main procedure with parameters is undefined.

59

DACS-80x86 User's Guide
The Ada Linker

6.52 The Parameter <recompilation-spec>

The syntax of <recompilation-spec> is:

<unit_spec>{-body|-specification](,...]

This parameter tells the linker to perform a consistency check of the entire program using the
hypothetical recompilation of all units designated in the <recompilation-spec>. The link process
in this instance is not actually performed.

The <unit_spec> is a list of unit-names (wildcards are allowed), separated by comma (,) or plus

(+). Each unit-name should include an option to indicate if the body or specification is to be
hypothetically compiled (-spec is the default).

6.53 Required Recompilations
If the consistency check found that recompilations are required, a list of required recompilations
is written to the current output file or 10 a text file if the -log option is specified (the name of
the text file is indicated in the log file, line 8). The list will include any inconsistencies detected
in the library and recompilations required by the hypothetical recompilations specified with the
options -declaration and -body.
The entries in the list contain:

1) The unit name.

2) Indication of what type of unit (declaration unit, body unit, or subunit).

3) If the unit is specified as recompiled with the -declaration or -body option, it is marked
with "-R-".

4) The environmental variable of the sublibrary containing the unit.
In the recompilation list the units are listed in a recommended recompilation order, consistent with
the dependencies among the units.
6.5.4 -searchlib

-searchlib <file_name> {,<flle_name>}
The -searchlib option directs the Ada Linker to search the specified 80x86 target libraries for
object modules in order 10 resolve symbol references. The 80x86 target libraries for object files
will be searched before the DACS Run-Time System (RTS) library normally searches for run-time
routines; in this way one can replace the standard DACS RTS routines with custom routines.

The -searchlib option is also intended to specify libraries of modules referenced from Ada via
pragma INTERFACE.

W

DACS-80x86 User's Guide
The Ada Linker

Examples:
$ ada_link -searchiid interface_lib p

Links the subprogram p. resolving referenced symbols first with the target library interface_lib
and then with the standard RTS target library.

6.5.5 -stop_before_link
-stop_before_link
The -stop_before_link option allows the user to introduce assemblers and linkers from third

parties or to otherwise configure the link to suit the application. The link is halted with the
following conditions:

. ser configurable data file, <main>_ucd.o, is produced with the default or user specified
L option values included.

» The elaboration code is contained in the <main>_elabcode.o file.

* The shell script file that contains the link command is present and has not been executed. The
file's name is <main>_link.com.

The temporary Ada object file(s) used by the target linker are produced. These objects are
linked and deleted when <main>_link.com is executed.

. chh-sdeaivellnkduob;eaﬁlescompnseaﬂAdamtsMudmgdmefmmthemc

library. At this point it is possibie to disassemble the "cut” object files using -object with the
disassembier.

To complete the link, the <main>_link.com script must be executed. To use third party 300ls, this
file may have 10 be modified.

6.5.6 -options
-options <parameter>

-options allow the user to pass options onto the target linker.

61

DACS-80x86 User's Guide
Run-Time System

6.5.7 -library

«library <flle-name>
library Sada_library (default)

The -library option specifies the current sublibrary, from which the linking of the main unit will
take place. If this option is not specified, the sublibrary specified by the environmental variable
ada_library is used.

6.5.8 -selective_link
-sejective_link

This extracts all required object modules from the Ada library (including the root library) and cuts
out exactly those pans that are actually called, in order to make the resulting target program
considerably smaller. If a program uses e.g. PUT_LINE as the only routine from TEXT_IO, the
contribution from the TEXT_IO object module will only contain PUT_LINE (and whatever that
needs). Note that disassemblies of units used in a selective link normally will not match what is
linked, because of the cutting. Such disassemblies may though be obtained by disassembling
directly those units that made up the selective link, by stopping the linking before the target link
phase (-stop_before_link), making disassemblies using -object and then resuming the link.

Note also that unused constants and permanent variables are not removed.
Only "level 1" subprograms may be removed. Nested subprograms (that are not called) are to be

removed during compilation using the -optimize option. Nested subprograms are only removed,
if the routine in which the nesting occurs is removed.

6.5.9 -[nollog

-log [<flle-spec>]
-nolog (default)

The option specifies if a log file will be produced from the front end linker. As default, no log
file is produced. If <file-spec> is not entered with -log the default file name for the log file will
be link.log in the current directory.

The log file contains extensive information on the results of the link. The file includes:

» An elaboration order list with an entry for each unit inciuded, showing the order in which the
units will be elaborated. For each unit, the unit type, the time stamp, and the dependéncies are
shown. Furthermore, any elaboration inconsistencies will be reported.

+ A linking summary with the following information:

» Parameters and active options.

+ The full name of the program library (the current sublibrary and its ancestor sublibraries).

62

DACS-80x86 User's Guide
» The Ada Linker
« The number of each type of diagnostic message.

o A termination message, stating if the linking was terminated successfully or unsuccessfully or
if 3 consequence examination was terminated.

+ Diagnostic messages and wamings are written on the log file.

If recompilations are required (as a result of the consistency check) a text file is produced
containing excerpts of the log file. The name of this text file is written in the log file, line 8.
The log file consists of:

» Header consisting of the linker name, the linker version number, and the link time.

» The elaboration order of the compilation units. The units are displayed in the order elaborated
with the unit number, compilation time, unit type, dependencies, and any linking errors.

« If recompilations are required, the units that must be recompiled are listed along with its unit
type and sublibrary level.

+ The linking summary that includes the main unit name, the program library, any recompilations
that are required, and if any errors or wamings occurred.

6.5.10 -[nojroot_extract

-root_extract
-noroot_extract (default)

The units contained in the Ada system library supplied by DDC-I have been extracted and inserted
into the Sada_root_lib OMF Library, thus eliminating extractions from the system library at link
time and improving link performance.

The user should normally not modify or compile into the Ada system library supplied by DDC-I.
If however, a unit is compiled into the Ada system library, the $ada_root_lib will no longer

match the Ada system library and -root_extract must be specified in order to link from the Ada
system library.

6.5.11 -[no]debug

~debug
-nodebug (default)

The -debug option specifies that debug information is generated. The debug information is

required t0 enabie symbolic debugging. If -nodebug is specified, the Ada linker will skip the
generation of debug information, thus saving link time, and will not insert the debug information

63

e

DACS-80x86 User's Guide
The Ada Linker

into the chosen sublibrary, thus saving disk space. Note that any unit which should be
symbolically debugged with the DDC-1 Ada Symbolic Cross Debugger must also be compiled with
the -debug option.

6.5.12 -[nojrts

-rts (default)
-norts

The -rts option directs the Ada Linker 0 include the appropriate Run-Time System (RTS) in the
link. -norts directs the Ada Linker to exclude the RTS in the link.

The ability to exclude the Run-Time System from the link allows the user to do an additional link
with a private copy of a custom RTS. The Ada Linker may report unresolved references to RTS
routines, but will still produce a relocatable object file.

6.5.13 -rms
-rms

This option selects the Rate Monotonic Scheduling Tasking Kemel (if tasking is selected). The
default is to use the Standard Tasking Kemel. This feature is supplied as an option.

6.5.14 -{nojextract

-extract (default)
-noextract

This option to the linker allows the user to specify that program unit objects should not be
extracted from the Ada program library. This option would be used if the user knows that many

objects have not changed since the last link and does not want the linker 1o waste time extracting
them.

To use this feawre, the user should modify the template to not delete unit object files after a
target link is performed. This way the object files remain in the current directory (or whereever
the user decides to put them). On subsequent links the user can extract object modules of
modified units from the Ada library using the standalone DACS extract tool. A new target link
can then be performed using a combination of newly extracied objects and the object files from
previous links that have gone unchanged. This could significantly improve linker speed when
linking programs that share common and rarely modified libraries and when relinking programs
that have had only a few units modified.

DACS-80x86 User’s Guide
The Ada Linker
6.5.15 -template

-template <flic-name>
-template $ada_template (default)

The template file is known to the linker via the environmental variable ada_template. DDC-I

supplies a default template file as part of the standard release system. Please refer to appendix H
for detailed infonmation.

6.5.16 -npx

-npx (default)
-nonpx

The -npx option specifies that the 80x87 (8087, 80287, or 80387) numeric coprocessor is used
by the Ada program. When -npx is specified, the 80x87 is initialized by the task initialization

routine, the floating point stack is reset during exception conditions, and the 80x37 context is
saved during a task switch.

Configurable Data

A 16 bit boolean constant is generated by the Ada Linker:

_CD_NPX_USED |boolean

= 0 - 80x87 is not used
= 1 - 80x87 is used

6.5.17 -tasks

-tasks [n]
(default is no tasking)

This option specifies the maximum number of tasks allowed by the RTS. If specified, n must be
greater than zero. If -tasks is specified without a value for n, n defaults to 10. If -tasks is not

specified, the RTS used will not include support for tasking. If -tasks is specified, the RTS used
will include support for tasking.

Ada Interrupt tasks identified with pragma INTERRUPT_HANDLER need not be included in the
count of maximum number of tasks. The main program must be counted in the maximum number

of tasks. Note that the main program, which may implicitly be considered a task, will not run
under control of the tasking kernel when -notasks is specified. See also -rms option.

Configurable Data
For -tasks, the linker generates the following configurable data:
6s

s e

DACS-80x86 User's Guide
* The Ada Linker

_CD_MAX_TASKS l INTEGER = ¥ I

CD_tCas W Task

Contzol

Blocks
(7ChS)

If -apx 13
active, N
aumeric co-
processor

Example:
$ ada_link -tasks 3 p

+ Link the program P, which has at most 3 tasks, including the main program.

6.5.18 -priority

-priority n
-priority 15 (default)

The -priority option specifies the default priority for task execution. The main program will run
at this priority, as well as tasks which have had no priority level defined via pragma PRIORITY.
The range of priorities is from 0 w 31.

Prioriies can be set on a per task basis dynamically at run time. See section E.1 (Package
RTS_EntryPoints) for more details.

Configurable Data

The Ada Linker generates the foliowing constant data:
CD_PRIORITY | Constant = N I

Example:

$ ada_link -tasks -priority 8 p

. Link the subprogram P which has the main program and tasks running at
defauit priority 8.

DACS-80x86 User's Guide
The Ada Linker

6.5.19 -time.slice
-time_slice [r] (default no time slicing is active)

The -time_slice options specifies whether or not time slicing will be used for tasks. If specified.
R is a decimal number of seconds representing the default time slice 1o be used. If R is not
specified, the default time slice will be 1/32 of a second. R must be in the range Duration’Small
< R £ 2.0 and must be greater than or equal 10 the -timer linker option value. Time slicing only
applies to tasks running at equal priority. Because the RTS is a preemptive priority scheduler, the
highest priority task will always run before any lower priority task. Only when two or more tasks
are running at the same priority is time slicing applied to each task.

Time slicing can be specified on a per task basis dynamically at run-time. See Section E.l
(Package RTS_EntryPoints) for more details.

Time slicing is not applicable unless tasking is being used. This means that the -tasks option
must be used for -time_slice to be effective.

Configurable Data
The Ada Linker generates the following data:

_CD_TIME_SLICE_USED l BOOLEAN I

- 0 = Mo time slicing
- l = Time slicing

CD_TIMx_SLICE l Absolute integer l

+ representing the number Y that satisfies Y * DURATION'SMALL = R

Example:
$ ada_link -time_slice 0.125 -tasks p

« Specifies tasks of equal priority to be time sliced each eighth of a second.

6.5.20 -timer

-timer R
-timer 0.001 (default)

The -timer option specifies the resolution of calls to the Run-Time System routine TIMER (see
the Run-Time System Configuration Guide for DACS-80x86 for more information). The number,
R, specifies a decimal number of seconds which have elapsed for every call o TIMER. The

default TIMER .esolution is one millisecond. R must be in the range DURATION'SMALL< R
< 2.

67

DACS-80x86 User's Guide
The Ada Linker

Configurable Data

The Ada Linker generates the following 16 bit constant:

CO_TIMER I Absolute Integer I

« representing the number Y that satisfies Y * DURATION’SMALL=R

6.5.21 -reserve_stack

-reserve_stack [n]
The -reserve_stack option designates how many words are reserved on each task stack. This
space is reserved for use by the RTS, which does no checking for stack overflow. This reserved

space also allows the RTS to function in situations such as handling a storage error exception
arising from stack overflow.

The -reserve_stack option also reserves part of the main program stack size, specified by the
linker option -mp_stack_size.

Configurabie Data

The Ada Linker generates the following integer constant:
_CD_RESERVE_STACK l INTEGER I

Examples:

$ ada_link -reserve_stack 200 -tasks p

» Reserve 200 words from each stack for use by the RTS.

6.5.22 -lt_stack.size

-lt_stack_size n
-lt_stack_size 500(default)

The -It_stack_size option designates the library task default size in words. A library task is
formed when a wsk object is declared at the outermost level of a package. Li tasks are

created and activated during the initial main program elaboration. (See the Ada Reference Manual
for more details).

68

_——

DACS-80x86 User's Guide
. The Ada Linker

.. For each library task, the representation spec:
FOR Task_object’STORAGE_SIZE USE N

can be used to specify the library task stack size. However, if the representation spec is not used,
the default library task size specified by -It_stack_size will be used.

For efficiency reasons, all tasks created within library tasks will have stacks allocated within the
same segment as the library task stack. Nomally, the segment which contains the library task
stack is allocated just large enough to0 hold the default library task stack. Therefore, one must use
the option -lt_stack_option or the pragma LT_SEGMENT_SIZE 10 reserve more space within the
segment that may be used for nested tasks’ stacks. (See the implementation dependent pragma
LT_SEGMENT_SIZE in Section F.1 for more information).

The range of this parameter is limited by physical memory size, task stack size allocated during
the build phase of the link, and the maximum segmemt size (64K for all except the 386/486
protected mode, which is 4 GB).

Configurable Data

The Ada Linker generates the following integer constant:
o057 _smacn_szze

Example:
$ ada_link -lt_stack_size 2048 -tasks p

» Link the subprogram P using a 2K words default library stack size.

6.5.23 -lt_stack._size

-It_segment_size n
-it_segment_size (lt_stack_size + 20 + exception_stack.space) (default)

This parameter defines in words the size of a library task segment. The library task segment
contains the task stack and the stacks of all its nested tasks.

The default value is only large enough to hold one default task stack. If -It_stack_size is used and

specifies a value other than the default value, -it_segment_size should also be specified to be the
size of <task_stack_size> +

<total_of_nested_tasks_sizes> +

<20_words_overhead> +

exception_stack_space.

Note that the task stack size specified by the 'STORAGE_size can be representation spec or by
the option -lt_stack_size.

Dynamically allocated tasks receive their own segment equal in size to the mp_segment_size.

69

R

. DACS-80x86 User's Guide
The Ada Linker

The range of this parameter is limited by physical memory size, task stack size allocated during

the build phase, and the maximum segment size (64K for all except the 386/486 protected mode,
which is 4 GB).

Configurable Data

The Ada Linker generates the following data structure:

_CD_LT_SE@@NT_SIZE T _‘

Example:
$ ada_link -It_segment_size 2048 -tasks p

e Link the program P using a library task segment size of 2K words.

6.524 -mp._stack_size

-mp_stack_size n
-mp_stack_size 8000 (default)

The -mp_stack_size option specifies the main program stack size in words.
The range of this parameter is limited by physical memory size, task stack size allocated during

the build phase (in tasking programs only), the maximum segment size (64K for all except the
386/486 protected mode, which is 4 GB), and the size of mp_segment_size.

Configurable Data

The Ada Linker generates the following data structures for nontasking programs:

oo e seacn_suan

_CO_MP_STACK MP_STACK_SI2E
words of

storage ‘

CO_MP_STACK_START dighest addr.
of MP stack

For tasking programs, the Ada Linker generates the same structures but limits the size o 1024
words. This stack is only used for the execution of the system startup code and elaboration.
Al main program activation, a segment for the main program equal to the size specified by -
-mp_segment_size will be allocated from the dynamic memory pool and a stack for the main
pmgmnequaltomesxzespecxﬁedby-mpmcksiuwmbeallocaxedfmmmememory
pool.

m

. DACS-80x86 User's Guide
The Ada Linker

Example:
$ ada_link -mp_stack_size 1000 p

« Link the subprogram P with a stack of 1000 words.

6.5.25 -mp._segment_size

-mp_segment_size n
-mp_segment_size 8100 (Default)

The -mp_segment_size option specifies the size, in words, of the segment in which the main
program stack is allocated. The default setting can be calculated from the formula:

mp_segment_size = mp_stack_size +

overhead + (tasks - 1) *

(overhead + task_storage_size)
Normally, the main program segment size can be set to the size of the main program stack.
However, when the main program contains nested tasks, the stacks for the nested tasks will be
allocated from the data segment which contains the main program stack. Therefore, when the
main program contains nested tasks. the main program stack segment must be extended via the
-mp_segment_size option.
The range of this parameter is limited by physical memory size, task stack size allocated during
the build phase (in tasking programs only), and the maximum segment size (64K for all except
the 386/486 protected mode, which is 4 GB).

Note: Dynamically allocated tasks receive their own segment equal in size to mp_segment_size.

Configurable Data

The Ada Linker allocates the _CD_MP_STACK (see the -mp_stack_size option) within a data
segment called _CD_MP_STACK_SEGMENT:

_CD_MP_STACK_SEGMENT M |
1 T

t
MP_STACK_START MP_STACK_SIZE MP_SEGMENT_SIIE

Example:
$ ada_link -tasks -mp_segment_size 32000 program_a

Links the subprogram PROGRAM_A, which contains tasks nested in the main program
allocating 32,000 words for the main program stack segment.

n

———_f

. DACS-80x86 User's Guide
The Ada Linker

6.5.26 -task_storage_size

-task_storage_size n
-task_storage_size 1024 (default)

This option sets the default storage size in words for stacks of tasks that are not library tasks.
This value can be overridden with a representation clause.

The range is limited by the size of the It_segment_size (if it is a subtask to a library task). or by
mp_segment_size (if it is a subtask to the main program).

Configurable Data
The Ada Linker generates the following data structure:

_CO_TASK_STORAGE_SIZE l INTEGER l

6.5.27 -interrupt_entry_table
-interrupt_entry_table L,H

The -interrupt_entry_table option specifies the range of interrupt vector numbers used by the
Ada program in interrupt tasks.

The number, L, specifies the lowest numbered interrupt handler. The number, H, specifies the
highest numbered interrupt handler. The range for low and high interrupts is O to 255.

Configurable Data

If -interrupt_entry_table is specified, the Ada Linker will generate the following data structure:

_CD_LOW_INTERROPT CONSTAN® (]
_CD_BIGE_INTERRUPT CONSTANT m
_CD_INTERRUPT_VECTOR (B-L+1) *$

words resezved
for Interrzupt
Yecto

If the user ever detects unresolved references o the symbois:

-CD_LOW_INTERRUPT
_CD_HIGH_INTERRUPT
_CD_INTERRUPT_VECTOR

e —

DACS-80x86 User's Guide
. The Ada Linker

the Ada program contains standard interrupt tasks for which the RTS requires the above data
structure. You must relink the Ada program specifying the -interrupt_entry_table option.

Example:
$ ada_link -tasks -interrupt_entry_table 5,20 p

« Links the subprogram P, which has standard Ada interrupt entries numbered §
through 20.

6.528 -[nojenable_task. trace

-enable_task_trace
-noenable_task_trace (default)

This option instructs the exception handler t0' produce a stack trace when a t